728x90
728x90
피어슨 상관 계수 구하기
들어가며
- 피어슨 상관 계수(Pearson Correlation Coefficient)를 구하는 방법을 정리해본다.
- 2024년 9회 제3유형 기출 문제로 피어슨 상관 계수를 구하는 문제가 출제되었다.
피어슨 상관 계수(Pearson Correlation Coefficient)
개념
- 두 변수 간의 선형 관계의 강도와 방향을 측정하는 통계적 지표
- -1에서 1 사이의 값을 가진다.
☑️ : 데이터 값
☑️ : 각각의 평균 값
특징
- 두 변수 간의 관계가 선형일 때만 유효하다. (직선 형태의 관계 등)
- 변수의 단위(스케일)에 영향을 받지 않는다. (cm, m 등 다른 단위를 사용해도 값은 동일하다.)
- -1에서 1 사이로 값이 제한된다.
- 선형 관계만 측정하므로 비선형 관계에는 적합하지 않다.
- 예) 같은 곡선 관계는 피어슨 상관 계수가 낮게 나올 수 있다.
- 이상치(Outlier)에 민감하며, 이상치는 피어슨 상관 계수의 값을 왜곡할 수 있다,
해석
값 | 설명 |
+1 | - 두 변수 간의 완벽한 양의 선형 관계 - 한 변수가 증가하면 다른 변수도 일정 비율로 증가 - 예) 공부 시간과 시험 점수 |
0 | - 두 변수 간에 선형 관계가 없음. - 예) 자동차 속도와 주행 시간 |
-1 | - 두 변수 간의 완벽한 음의 선형 관계 - 한 변수가 증가하면 다른 변수는 일정 비율로 감소 - 예) 운동 시간과 커피 소비량 |
방법
1️⃣ scipy.stats 모듈의 pearsonr 함수 사용하기
scipy.stats
모듈의pearsonr
함수를 사용하여 피어슨 상관 계수를 구할 수 있다.- 피어슨 상관 계수 값과 유의 확률(P-value) 값을 확인할 수 있다.
도움말
Help on function pearsonr in module scipy.stats._stats_py: pearsonr(x, y, *, alternative='two-sided', method=None, axis=0) Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient [1]_ measures the linear relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. This function also performs a test of the null hypothesis that the distributions underlying the samples are uncorrelated and normally distributed. (See Kowalski [3]_ for a discussion of the effects of non-normality of the input on the distribution of the correlation coefficient.) The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Parameters ---------- x : array_like Input array. y : array_like Input array. axis : int or None, default Axis along which to perform the calculation. Default is 0. If None, ravel both arrays before performing the calculation. .. versionadded:: 1.13.0 alternative : {'two-sided', 'greater', 'less'}, optional Defines the alternative hypothesis. Default is 'two-sided'. The following options are available: * 'two-sided': the correlation is nonzero * 'less': the correlation is negative (less than zero) * 'greater': the correlation is positive (greater than zero) .. versionadded:: 1.9.0 method : ResamplingMethod, optional Defines the method used to compute the p-value. If `method` is an instance of `PermutationMethod`/`MonteCarloMethod`, the p-value is computed using `scipy.stats.permutation_test`/`scipy.stats.monte_carlo_test` with the provided configuration options and other appropriate settings. Otherwise, the p-value is computed as documented in the notes. .. versionadded:: 1.11.0 Returns ------- result : `~scipy.stats._result_classes.PearsonRResult` An object with the following attributes: statistic : float Pearson product-moment correlation coefficient. pvalue : float The p-value associated with the chosen alternative. The object has the following method: confidence_interval(confidence_level, method) This computes the confidence interval of the correlation coefficient `statistic` for the given confidence level. The confidence interval is returned in a ``namedtuple`` with fields `low` and `high`. If `method` is not provided, the confidence interval is computed using the Fisher transformation [1]_. If `method` is an instance of `BootstrapMethod`, the confidence interval is computed using `scipy.stats.bootstrap` with the provided configuration options and other appropriate settings. In some cases, confidence limits may be NaN due to a degenerate resample, and this is typical for very small samples (~6 observations). Warns ----- `~scipy.stats.ConstantInputWarning` Raised if an input is a constant array. The correlation coefficient is not defined in this case, so ``np.nan`` is returned. `~scipy.stats.NearConstantInputWarning` Raised if an input is "nearly" constant. The array ``x`` is considered nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``. Numerical errors in the calculation ``x - mean(x)`` in this case might result in an inaccurate calculation of r. See Also -------- spearmanr : Spearman rank-order correlation coefficient. kendalltau : Kendall's tau, a correlation measure for ordinal data. Notes ----- The correlation coefficient is calculated as follows: .. math:: r = \frac{\sum (x - m_x) (y - m_y)} {\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}} where :math:`m_x` is the mean of the vector x and :math:`m_y` is the mean of the vector y. Under the assumption that x and y are drawn from independent normal distributions (so the population correlation coefficient is 0), the probability density function of the sample correlation coefficient r is ([1]_, [2]_): .. math:: f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)} where n is the number of samples, and B is the beta function. This is sometimes referred to as the exact distribution of r. This is the distribution that is used in `pearsonr` to compute the p-value when the `method` parameter is left at its default value (None). The distribution is a beta distribution on the interval [-1, 1], with equal shape parameters a = b = n/2 - 1. In terms of SciPy's implementation of the beta distribution, the distribution of r is:: dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2) The default p-value returned by `pearsonr` is a two-sided p-value. For a given sample with correlation coefficient r, the p-value is the probability that abs(r') of a random sample x' and y' drawn from the population with zero correlation would be greater than or equal to abs(r). In terms of the object ``dist`` shown above, the p-value for a given r and length n can be computed as:: p = 2*dist.cdf(-abs(r)) When n is 2, the above continuous distribution is not well-defined. One can interpret the limit of the beta distribution as the shape parameters a and b approach a = b = 0 as a discrete distribution with equal probability masses at r = 1 and r = -1. More directly, one can observe that, given the data x = [x1, x2] and y = [y1, y2], and assuming x1 != x2 and y1 != y2, the only possible values for r are 1 and -1. Because abs(r') for any sample x' and y' with length 2 will be 1, the two-sided p-value for a sample of length 2 is always 1. For backwards compatibility, the object that is returned also behaves like a tuple of length two that holds the statistic and the p-value. References ---------- .. [1] "Pearson correlation coefficient", Wikipedia, https://en.wikipedia.org/wiki/Pearson_correlation_coefficient .. [2] Student, "Probable error of a correlation coefficient", Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310. .. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution of the Sample Product-Moment Correlation Coefficient" Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 21, No. 1 (1972), pp. 1-12. Examples -------- >>> import numpy as np >>> from scipy import stats >>> x, y = [1, 2, 3, 4, 5, 6, 7], [10, 9, 2.5, 6, 4, 3, 2] >>> res = stats.pearsonr(x, y) >>> res PearsonRResult(statistic=-0.828503883588428, pvalue=0.021280260007523286) To perform an exact permutation version of the test: >>> rng = np.random.default_rng(7796654889291491997) >>> method = stats.PermutationMethod(n_resamples=np.inf, random_state=rng) >>> stats.pearsonr(x, y, method=method) PearsonRResult(statistic=-0.828503883588428, pvalue=0.028174603174603175) To perform the test under the null hypothesis that the data were drawn from *uniform* distributions: >>> method = stats.MonteCarloMethod(rvs=(rng.uniform, rng.uniform)) >>> stats.pearsonr(x, y, method=method) PearsonRResult(statistic=-0.828503883588428, pvalue=0.0188) To produce an asymptotic 90% confidence interval: >>> res.confidence_interval(confidence_level=0.9) ConfidenceInterval(low=-0.9644331982722841, high=-0.3460237473272273) And for a bootstrap confidence interval: >>> method = stats.BootstrapMethod(method='BCa', random_state=rng) >>> res.confidence_interval(confidence_level=0.9, method=method) ConfidenceInterval(low=-0.9983163756488651, high=-0.22771001702132443) # may vary If N-dimensional arrays are provided, multiple tests are performed in a single call according to the same conventions as most `scipy.stats` functions: >>> rng = np.random.default_rng(2348246935601934321) >>> x = rng.standard_normal((8, 15)) >>> y = rng.standard_normal((8, 15)) >>> stats.pearsonr(x, y, axis=0).statistic.shape # between corresponding columns (15,) >>> stats.pearsonr(x, y, axis=1).statistic.shape # between corresponding rows (8,) To perform all pairwise comparisons between slices of the arrays, use standard NumPy broadcasting techniques. For instance, to compute the correlation between all pairs of rows: >>> stats.pearsonr(x[:, np.newaxis, :], y, axis=-1).statistic.shape (8, 8) There is a linear dependence between x and y if y = a + b*x + e, where a,b are constants and e is a random error term, assumed to be independent of x. For simplicity, assume that x is standard normal, a=0, b=1 and let e follow a normal distribution with mean zero and standard deviation s>0. >>> rng = np.random.default_rng() >>> s = 0.5 >>> x = stats.norm.rvs(size=500, random_state=rng) >>> e = stats.norm.rvs(scale=s, size=500, random_state=rng) >>> y = x + e >>> stats.pearsonr(x, y).statistic 0.9001942438244763 This should be close to the exact value given by >>> 1/np.sqrt(1 + s**2) 0.8944271909999159 For s=0.5, we observe a high level of correlation. In general, a large variance of the noise reduces the correlation, while the correlation approaches one as the variance of the error goes to zero. It is important to keep in mind that no correlation does not imply independence unless (x, y) is jointly normal. Correlation can even be zero when there is a very simple dependence structure: if X follows a standard normal distribution, let y = abs(x). Note that the correlation between x and y is zero. Indeed, since the expectation of x is zero, cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero by symmetry. The following lines of code illustrate this observation: >>> y = np.abs(x) >>> stats.pearsonr(x, y) PearsonRResult(statistic=-0.05444919272687482, pvalue=0.22422294836207743) A non-zero correlation coefficient can be misleading. For example, if X has a standard normal distribution, define y = x if x < 0 and y = 0 otherwise. A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797..., implying a high level of correlation: >>> y = np.where(x < 0, x, 0) >>> stats.pearsonr(x, y) PearsonRResult(statistic=0.861985781588, pvalue=4.813432002751103e-149) This is unintuitive since there is no dependence of x and y if x is larger than zero which happens in about half of the cases if we sample x and y.
예제 코드
from scipy.stats import pearsonr x = [10, 20, 30, 40, 50] y = [15, 25, 35, 45, 55] # 피어슨 상관 계수 계산 corr, p_value = pearsonr(x, y) print(f"피어슨 상관 계수: {corr}") print(f"P-value: {p_value}") """ 출력 결과 피어슨 상관 계수: 1.0 P-value: 0.0 """
2️⃣ 판다스(Pandas) 패키지의 corr
함수 사용하기
- 판다스(Pandas) 패키지의
corr
함수를 이용하여 확인하는 방법이다. - 피어슨 상관 계수 값을 확인할 수 있다.
예제 코드
from scipy.stats import pearsonr df = pd.DataFrame({ 'X': [10, 20, 30, 40, 50], 'Y': [15, 25, 35, 45, 55] }) corr = df['X'].corr(df['Y']) # 피어슨 상관계수 값 확인 print(f"피어슨 상관 계수: {corr}") """ 출력 결과 피어슨 상관 계수: 1.0 """
참고 사이트
728x90
728x90
'Certificate > 빅데이터분석기사' 카테고리의 다른 글
[빅데이터분석기사 실기] 시험장에서 알아두면 좋은 팁 (0) | 2024.11.29 |
---|---|
[빅데이터분석기사 실기] 제3유형: 가설 검정 연습 문제 (0) | 2024.11.27 |
[빅데이터분석기사 실기] 제2유형 시험 준비 (0) | 2024.11.26 |
[빅데이터분석기사 실기] 제1유형 시험 준비 (0) | 2024.11.25 |
[빅데이터분석기사 실기] help(), dir() 활용하기 (0) | 2024.11.25 |
[빅데이터분석기사 실기] corr() 함수와 numeric_only 옵션 (0) | 2024.11.25 |
[빅데이터분석기사 실기] 시험장 들어가기 전에 보기 빠르게 보기 좋은 강의 모음 (1) | 2024.11.17 |
[빅데이터분석기사 실기] 제6회 기출 변형 문제 (제3유형) (0) | 2024.11.16 |