728x90
728x90
help(), dir() 활용하기
들어가며
- 빅데이터분석기사 실기 시험장에서 특정 함수명이나 함수의 사용 방법을 잊어버렸을 경우,
help()
또는dir()
함수를 이용하여 확인할 수 있다. - 이에 대한 내용을 정리해본다.

방법
0️⃣ 참고 사항
help()
또는dir()
함수의 인자에 넣을 대상을 우선import
해줘야 한다.
import sklearn # (1) 확인하고자 할 대상 불러오기 print(help(sklearn)) # (2) 사용 방법 확인 print(dir(sklearn)) # (3) 속성/메서드 목록 확인
1️⃣ help() 함수 사용하기
- 객체, 모듈, 함수, 클래스 등에 대한 도움말 문서(docstring)를 확인하고 싶을 경우
help()
함수를 사용한다. - 어떤 함수나 클래스의 사용 방법을 알고 싶을 때 사용한다.
예 : 사이킷런 패키지의 도움말 문서 확인하기
import sklearn print(help(sklearn))
Help on package sklearn: NAME sklearn - Configure global settings and get information about the working environment. PACKAGE CONTENTS __check_build (package) _build_utils (package) _built_with_meson _config _distributor_init _isotonic _loss (package) _min_dependencies base calibration cluster (package) compose (package) conftest covariance (package) cross_decomposition (package) datasets (package) decomposition (package) discriminant_analysis dummy ensemble (package) exceptions experimental (package) externals (package) feature_extraction (package) feature_selection (package) gaussian_process (package) impute (package) inspection (package) isotonic kernel_approximation kernel_ridge linear_model (package) manifold (package) metrics (package) mixture (package) model_selection (package) multiclass multioutput naive_bayes neighbors (package) neural_network (package) pipeline preprocessing (package) random_projection semi_supervised (package) svm (package) tests (package) tree (package) utils (package) FUNCTIONS clone(estimator, *, safe=True) Construct a new unfitted estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It returns a new estimator with the same parameters that has not been fitted on any data. .. versionchanged:: 1.3 Delegates to `estimator.__sklearn_clone__` if the method exists. Parameters ---------- estimator : {list, tuple, set} of estimator instance or a single estimator instance The estimator or group of estimators to be cloned. safe : bool, default=True If safe is False, clone will fall back to a deep copy on objects that are not estimators. Ignored if `estimator.__sklearn_clone__` exists. Returns ------- estimator : object The deep copy of the input, an estimator if input is an estimator. Notes ----- If the estimator's `random_state` parameter is an integer (or if the estimator doesn't have a `random_state` parameter), an *exact clone* is returned: the clone and the original estimator will give the exact same results. Otherwise, *statistical clone* is returned: the clone might return different results from the original estimator. More details can be found in :ref:`randomness`. Examples -------- >>> from sklearn.base import clone >>> from sklearn.linear_model import LogisticRegression >>> X = [[-1, 0], [0, 1], [0, -1], [1, 0]] >>> y = [0, 0, 1, 1] >>> classifier = LogisticRegression().fit(X, y) >>> cloned_classifier = clone(classifier) >>> hasattr(classifier, "classes_") True >>> hasattr(cloned_classifier, "classes_") False >>> classifier is cloned_classifier False config_context(*, assume_finite=None, working_memory=None, print_changed_only=None, display=None, pairwise_dist_chunk_size=None, enable_cython_pairwise_dist=None, array_api_dispatch=None, transform_output=None, enable_metadata_routing=None, skip_parameter_validation=None) Context manager for global scikit-learn configuration. Parameters ---------- assume_finite : bool, default=None If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. If None, the existing value won't change. The default value is False. working_memory : int, default=None If set, scikit-learn will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. If None, the existing value won't change. The default value is 1024. print_changed_only : bool, default=None If True, only the parameters that were set to non-default values will be printed when printing an estimator. For example, ``print(SVC())`` while True will only print 'SVC()', but would print 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters when False. If None, the existing value won't change. The default value is True. .. versionchanged:: 0.23 Default changed from False to True. display : {'text', 'diagram'}, default=None If 'diagram', estimators will be displayed as a diagram in a Jupyter lab or notebook context. If 'text', estimators will be displayed as text. If None, the existing value won't change. The default value is 'diagram'. .. versionadded:: 0.23 pairwise_dist_chunk_size : int, default=None The number of row vectors per chunk for the accelerated pairwise- distances reduction backend. Default is 256 (suitable for most of modern laptops' caches and architectures). Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 enable_cython_pairwise_dist : bool, default=None Use the accelerated pairwise-distances reduction backend when possible. Global default: True. Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 array_api_dispatch : bool, default=None Use Array API dispatching when inputs follow the Array API standard. Default is False. See the :ref:`User Guide <array_api>` for more details. .. versionadded:: 1.2 transform_output : str, default=None Configure output of `transform` and `fit_transform`. See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` for an example on how to use the API. - `"default"`: Default output format of a transformer - `"pandas"`: DataFrame output - `"polars"`: Polars output - `None`: Transform configuration is unchanged .. versionadded:: 1.2 .. versionadded:: 1.4 `"polars"` option was added. enable_metadata_routing : bool, default=None Enable metadata routing. By default this feature is disabled. Refer to :ref:`metadata routing user guide <metadata_routing>` for more details. - `True`: Metadata routing is enabled - `False`: Metadata routing is disabled, use the old syntax. - `None`: Configuration is unchanged .. versionadded:: 1.3 skip_parameter_validation : bool, default=None If `True`, disable the validation of the hyper-parameters' types and values in the fit method of estimators and for arguments passed to public helper functions. It can save time in some situations but can lead to low level crashes and exceptions with confusing error messages. Note that for data parameters, such as `X` and `y`, only type validation is skipped but validation with `check_array` will continue to run. .. versionadded:: 1.3 Yields ------ None. See Also -------- set_config : Set global scikit-learn configuration. get_config : Retrieve current values of the global configuration. Notes ----- All settings, not just those presently modified, will be returned to their previous values when the context manager is exited. Examples -------- >>> import sklearn >>> from sklearn.utils.validation import assert_all_finite >>> with sklearn.config_context(assume_finite=True): ... assert_all_finite([float('nan')]) >>> with sklearn.config_context(assume_finite=True): ... with sklearn.config_context(assume_finite=False): ... assert_all_finite([float('nan')]) Traceback (most recent call last): ... ValueError: Input contains NaN... get_config() Retrieve current values for configuration set by :func:`set_config`. Returns ------- config : dict Keys are parameter names that can be passed to :func:`set_config`. See Also -------- config_context : Context manager for global scikit-learn configuration. set_config : Set global scikit-learn configuration. Examples -------- >>> import sklearn >>> config = sklearn.get_config() >>> config.keys() dict_keys([...]) set_config(assume_finite=None, working_memory=None, print_changed_only=None, display=None, pairwise_dist_chunk_size=None, enable_cython_pairwise_dist=None, array_api_dispatch=None, transform_output=None, enable_metadata_routing=None, skip_parameter_validation=None) Set global scikit-learn configuration. .. versionadded:: 0.19 Parameters ---------- assume_finite : bool, default=None If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. Global default: False. .. versionadded:: 0.19 working_memory : int, default=None If set, scikit-learn will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. Global default: 1024. .. versionadded:: 0.20 print_changed_only : bool, default=None If True, only the parameters that were set to non-default values will be printed when printing an estimator. For example, ``print(SVC())`` while True will only print 'SVC()' while the default behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters. .. versionadded:: 0.21 display : {'text', 'diagram'}, default=None If 'diagram', estimators will be displayed as a diagram in a Jupyter lab or notebook context. If 'text', estimators will be displayed as text. Default is 'diagram'. .. versionadded:: 0.23 pairwise_dist_chunk_size : int, default=None The number of row vectors per chunk for the accelerated pairwise- distances reduction backend. Default is 256 (suitable for most of modern laptops' caches and architectures). Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 enable_cython_pairwise_dist : bool, default=None Use the accelerated pairwise-distances reduction backend when possible. Global default: True. Intended for easier benchmarking and testing of scikit-learn internals. End users are not expected to benefit from customizing this configuration setting. .. versionadded:: 1.1 array_api_dispatch : bool, default=None Use Array API dispatching when inputs follow the Array API standard. Default is False. See the :ref:`User Guide <array_api>` for more details. .. versionadded:: 1.2 transform_output : str, default=None Configure output of `transform` and `fit_transform`. See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` for an example on how to use the API. - `"default"`: Default output format of a transformer - `"pandas"`: DataFrame output - `"polars"`: Polars output - `None`: Transform configuration is unchanged .. versionadded:: 1.2 .. versionadded:: 1.4 `"polars"` option was added. enable_metadata_routing : bool, default=None Enable metadata routing. By default this feature is disabled. Refer to :ref:`metadata routing user guide <metadata_routing>` for more details. - `True`: Metadata routing is enabled - `False`: Metadata routing is disabled, use the old syntax. - `None`: Configuration is unchanged .. versionadded:: 1.3 skip_parameter_validation : bool, default=None If `True`, disable the validation of the hyper-parameters' types and values in the fit method of estimators and for arguments passed to public helper functions. It can save time in some situations but can lead to low level crashes and exceptions with confusing error messages. Note that for data parameters, such as `X` and `y`, only type validation is skipped but validation with `check_array` will continue to run. .. versionadded:: 1.3 See Also -------- config_context : Context manager for global scikit-learn configuration. get_config : Retrieve current values of the global configuration. Examples -------- >>> from sklearn import set_config >>> set_config(display='diagram') # doctest: +SKIP show_versions() Print useful debugging information" .. versionadded:: 0.20 Examples -------- >>> from sklearn import show_versions >>> show_versions() # doctest: +SKIP DATA __SKLEARN_SETUP__ = False __all__ = ['calibration', 'cluster', 'covariance', 'cross_decompositio... VERSION 1.5.2 FILE /usr/local/lib/python3.12/site-packages/sklearn/__init__.py
예 2 : 사이킷런 패키지의 preprocessing 모듈 도움말 문서 확인하기
import sklearn.preprocessing print(help(sklearn.preprocessing))
Help on package sklearn.preprocessing in sklearn: NAME sklearn.preprocessing - Methods for scaling, centering, normalization, binarization, and more. PACKAGE CONTENTS _csr_polynomial_expansion _data _discretization _encoders _function_transformer _label _polynomial _target_encoder _target_encoder_fast tests (package) CLASSES sklearn.base.BaseEstimator(sklearn.utils._estimator_html_repr._HTMLDocumentationLinkMixin, sklearn.utils._metadata_requests._MetadataRequester) sklearn.preprocessing._data.Binarizer(sklearn.base.OneToOneFeatureMixin, sklearn.base.TransformerMixin, sklearn.base.BaseEstimator) sklearn.preprocessing._data.KernelCenterer(sklearn.base.ClassNamePrefixFeaturesOutMixin, sklearn.base.TransformerMixin, sklearn.base.BaseEstimator) sklearn.preprocessing._data.MaxAbsScaler(sklearn.base.OneToOneFeatureMixin, sklearn.base.TransformerMixin, sklearn.base.BaseEstimator) sklearn.preprocessing._data.MinMaxScaler(sklearn.base.OneToOneFeatureMixin, sklearn.base.TransformerMixin, sklearn.base.BaseEstimator) sklearn.preprocessing._data.Normalizer(sklearn.base.OneToOneFeatureMixin, sklearn.base.TransformerMixin, sklearn.base.BaseEstimator) sklearn.preprocessing._data.PowerTransformer(sklearn.base.OneToOneFeatureMixin, sklearn.base.TransformerMixin, sklearn.base.BaseEstimator) sklearn.preprocessing._data.QuantileTransformer(sklearn.base.OneToOneFeatureMixin, sklearn.base.Tran ...
2️⃣ dir() 함수 사용하기
- 객체, 모듈 등이 가진 속성(Attribute) 및 메서드(Method)를 리스트 형태로 확인하고 싶을 때
dir()
함수를 사용한다. - 객체의 구조나 사용할 수 있는 메서드를 확인하고자 할 때 사용한다.
예 1 : 사이킷런 패키지의 속성 및 메서드 목록 확인하기
import sklearn print(dir(sklearn))
['_BUILT_WITH_MESON', '__SKLEARN_SETUP__', '__all__', '__builtins__', '__cached__', '__check_build', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__', '_built_with_meson', '_config', '_distributor_init', 'base', 'clone', 'config_context', 'exceptions', 'externals', 'get_config', 'logger', 'logging', 'os', 'random', 'set_config', 'setup_module', 'show_versions', 'sklearn', 'sys', 'utils']
예 2: 사이킷런 패키지의 preprocessing 모듈의 속성 및 메서드 목록 확인하기
import sklearn.preprocessing print(dir(sklearn.preprocessing))
['Binarizer', 'FunctionTransformer', 'KBinsDiscretizer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MaxAbsScaler', 'MinMaxScaler', 'MultiLabelBinarizer', 'Normalizer', 'OneHotEncoder', 'OrdinalEncoder', 'PolynomialFeatures', 'PowerTransformer', 'QuantileTransformer', 'RobustScaler', 'SplineTransformer', 'StandardScaler', 'TargetEncoder', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_csr_polynomial_expansion', '_data', '_discretization', '_encoders', '_function_transformer', '_label', '_polynomial', '_target_encoder', '_target_encoder_fast', 'add_dummy_feature', 'binarize', 'label_binarize', 'maxabs_scale', 'minmax_scale', 'normalize', 'power_transform', 'quantile_transform', 'robust_scale', 'scale']
정리
- 사이킷런(
sklearn
) 패키지의preprocessing
모듈에 포함되어 있는MinMaxScaler
함수의 사용 방법을 잊어 버렸을 경우,help(sklearn.preprocessing.MinMaxScaler)
을 이용하여 확인한다.- 사용 예시 코드까지 확인할 수 있다.
import sklearn.preprocessing.MinMaxScaler print(help(sklearn.preprocessing.MinMaxScaler))
- 사이킷런(
sklearn
) 패키지의preprocessing
모듈에 포함되어 있는 특정 함수명을 잊어 버렸을 경우,dir(sklearn.preprocessing)
을 이용하여 확인한다.
import sklearn.preprocessing print(dir(sklearn.preprocessing))
참고 사이트
Built-in Functions
The Python interpreter has a number of functions and types built into it that are always available. They are listed here in alphabetical order.,,,, Built-in Functions,,, A, abs(), aiter(), all(), a...
docs.python.org
728x90
728x90
'Certificate > 빅데이터분석기사' 카테고리의 다른 글
[빅데이터분석기사 실기] 시험장에서 알아두면 좋은 팁 (0) | 2024.11.29 |
---|---|
[빅데이터분석기사 실기] 제3유형: 가설 검정 연습 문제 (0) | 2024.11.27 |
[빅데이터분석기사 실기] 제2유형 시험 준비 (0) | 2024.11.26 |
[빅데이터분석기사 실기] 제1유형 시험 준비 (0) | 2024.11.25 |
[빅데이터분석기사 실기] corr() 함수와 numeric_only 옵션 (0) | 2024.11.25 |
[빅데이터분석기사 실기] 시험장 들어가기 전에 보기 빠르게 보기 좋은 강의 모음 (1) | 2024.11.17 |
[빅데이터분석기사 실기] 제6회 기출 변형 문제 (제3유형) (0) | 2024.11.16 |
[빅데이터분석기사 실기] 제7회 기출 변형 문제 (제3유형) (0) | 2024.11.16 |